激光协会
首页 > 行业研究

激光再制造技术与应用发展研究

一、前言

高端装备关键零部件,如航空发动机热端部件、超超临界汽轮机转子及叶片、铁路轨道、冶金装备等,由于服役环境恶劣,易发生结构、表面损伤而导致高端装备停机或报废。若运用全生命周期制造的思路,通过快速再制造或现场再制造,可延长易损件的服役时间,实现资源的再利用,促进可持续发展。《中国制造 2025》中明确指出:全面推行绿色制造,大力发展再制造产业,实施高端再制造、智能再制造、在役再制造,推进产品认定,促进再制造产业持续健康发展。

激光再制造技术以高功率激光束为热源,运用非接触光加工的方式,可为零件修复与再制造提供新的解决方案,是绿色再制造的重要支撑技术。该技术可快速恢复产品或零部件尺寸,并在性能上达到甚至超越新品,具有修复精度高、工件损伤小、修复区结合强度高、材料利用率高等优点。面向不同领域关键零部件的修复需求,国内外学者主要针对铁基 、钛基 、钴基、镍基合金材料的激光熔覆开展了理论和实验研究,并在航空发动机叶片、汽轮机转子、冶金装备、煤矿机械、高压油泵凸轮轴等领域开展了激光再制造技术的应用基础研究。但激光再制造技术目前仅在少数领域实现了工业应用,面向规模应用仍存在一定的技术与市场瓶颈。

针对激光再制造技术与产业,本文在分析其发展现状的基础上,梳理当前面临的技术问题与应用挑战,并研判发展趋势,提出促进我国激光再制造技术与产业发展的对策建议。


二、激光再制造技术宏观需求分析

(一)激光再制造技术是制造技术创新的前沿领域

激光再制造技术可用于激光再制造的前处理、成形修复和后处理环节,具体分类如图 1 所示。其中,核心环节是激光成形修复技术,如采用激光熔覆成形、激光快速成形以及激光焊接工艺来修复零件缺损部位。此外,激光切割和激光清洗技术可用于零件的拆解和前处理环节,激光冲击强化和激光抛光可用于零件修复件的后处理环节。

图 1 激光再制造技术分类


基于激光熔覆成形和激光快速成形的激光增材再制造技术,具有能运用稳定的熔池形成冶金结合、界面结合强度远高于镀膜和喷涂以及热输入量小于电弧堆焊的优势,可满足高强度零部件的再制造需求,是先进制造技术的重要前沿发展方向。针对部分大型装备、关键零部件的严苛修复需求,特种修复工艺、多能场激光再制造技术成为当前研究热点。


(二)激光再制造产业是促进制造业转型升级的新兴产业

激光再制造技术在高端装备再制造中占据优势,被认为是制造业转型升级的新一代战略性支撑技术。由激光再制造技术发展而形成的激光再制造产业,为制造业转型升级提供了发展动力。

激光再制造产业在欧美等发达国家或地区已成为具有显著经济和社会效益的产业,极大地推动了制造业的转型升级。为推动激光再制造产业的发展,世界主要国家或地区先后制定了一系列战略建议与政策支持(见表 1)。当前,我国已跻身为制造业大国,但相较于发达国家或地区,生产制造技术的精细化程度仍有待提高。另外,在节能减排的发展要求下,我国也逐渐关注激光再制造产业领域,并推出了一系列战略与政策进行配套支持发展。近年来,我国激光修复与再制造技术在航空、航天、矿山机械、轮机装备、冶金装备等领域初步形成产业,在煤矿液压支架、冶金轧辊、汽轮机转子等动力设备再制造上得到了广泛应用。激光再制造产业成为推动制造业转型升级的新兴产业。


表 1 世界主要国家或地区激光再制造技术及产业相关战略与政策


(三)激光再制造产业是促进可持续发展的重要力量

《中国制造 2025》将绿色制造作为五大工程之一,更明确指出要组织实施传统制造业能效提升、清洁生产、节水治污、循环利用等专项技术并加以改造。而激光再制造产业与绿色制造的理念高度契合,为传统制造业可持续发展提供重要支撑。

激光再制造技术具有热量输入集中、工件损伤小、加工速度快等特点,是一种新兴的绿色再制造技术。激光再制造技术可实现关键零部件的快速修复并减少资源浪费,降低停机造成的能源和经济损失,促进可持续发展。另外,激光再制造产业在制造过程中“三废”排放少,污染源可控,这与我国构建循环经济高度契合,并有利于促进节能减排战略需求的部署实施。


(四)激光再制造技术深刻改变着高端装备的设计与运行方式

高端装备制造业的绿色、低能耗、高品质发展已是当务之急,对关键零部件进行全生命周期管理已成为高端装备发展的重要趋势。激光再制造技术的出现和使用,完善了关键零部件全生命周期管理的内涵。具体来说,关键零部件在设计阶段要考虑修复可能性,在服役阶段要考虑使用寿命等的信息反馈,在报废阶段要考虑非破坏性分解等报废方式。同时,通过加强对产品失效分析及剩余寿命变化规律的探索,可以实现零部件失效部位高性能表面涂层的设计与制备以及薄弱部位的加工完善和质量控制。

全生命周期的制造模式将从源头上有效治理制造业污染,弥补设备运行停顿带来的损失,颠覆传统的制造模式。而激光修复与再制造技术作为其中的关键一环,深刻改变着制造业装备的设计思路和运行方式。


三、激光再制造技术发展现状

(一)激光再制造技术在不同工业领域零部件修复中实现应用

随着大功率激光器及其配套设备的不断发展,越来越多的国家加强对激光再制造技术在机械零件制造和修复领域的理论与技术研究。如图 2 所示,目前激光再制造技术已在航空、航天、国防工业、矿山机械、能源动力、冶金装备等工业领域实际应用。国外激光再制造技术的应用主要集中于国防工业及航空、航天领域,如应用激光再制造技术修复航空发动机失效零部件。

图 2 面向不同工业领域的激光再制造技术


我国激光再制造技术在军用领域主要用于构建军用航空发动机关键零部件再制造核心技术体系;在民用工业领域,激光再制造技术已在矿山机械、能源动力、冶金装备等领域的煤矿液压支架、汽轮机转子及叶片、冶金辊道、芯棒、轧机牌坊等大型装备及关键零部件的修复中实现应用,其中,煤矿液压支架的激光再制造技术已实现了批量化应用。


(二)能场辅助激光再制造成为高质量再制造的重要手段

面向高端装备关键零部件的高质量修复、现场修复需求,单一能束的激光金属成形技术存在易产生气孔、残余应力、微裂纹等缺陷,从而影响到修复件的性能和稳定性。因而,仅仅通过改变激光工艺已难以满足高端装备对精确性、复杂性和高性能等的再制造需求。

据此,国内外学者提出采用电磁场 、感应热场、超声振动等外加能场耦合作用于激光再制造过程(见图 3)。具体来看,面向窄深缺陷修复问题以及严格无气孔要求,引入电磁场调节熔池流动、抑制气孔;面向对微观组织有严格要求的部件,引入超声能场对组织形貌进行调控;面向易开裂材料或部位,引入热场降低温度梯度,降低残余应力风险。当前,能场辅助激光再制造技术已成为研究热点,但相关技术仍处于实验室研发及原型样机研发阶段。面向工业应用需求,亟需在复合制造工艺定型、能场复合集成设备等方面继续开展研发,以满足未来高端装备对高质量、高效率的修复需求。

图 3 外加能场在激光再制造中的作用机制


(三)现场再制造是激光再制造技术的重要发展方向

面对尺寸庞大、难以运输的大型设备或大型零部件的修复需求,应用激光现场再制造技术的突出优势可快速实现损伤设备的恢复运行。为便于进行现场再制造,激光设备需小型化、集成化且方便运输,以适应复杂的现场环境和保持较高的稳定性。

采用激光熔覆再制造技术对大型装备或零部件进行修复时,尤其是非水平基面损伤的激光修复,熔池在重力作用下形状易发生变化,这对多角度激光再制造工艺提出了更高的要求。为此,石世宏研究团队采用光内送粉激光熔覆技术,在不同倾角基面下控制激光熔覆头与基面始终垂直,实现了全角度激光熔覆。姚建华研究团队研究了工作气流及熔覆角度对激光修复转子轴质量的影响情况,实现了不同倾角条件下的激光修复 。


四、激光再制造技术发展面临的挑战

以激光再制造技术为代表的装备修复与再制造产业是装备制造业的衍生产业。我国激光再制造技术虽已在矿山机械、能源动力、冶金装备等领域率先得到了应用,但随着高端装备产业的发展对激光再制造技术和产业提出了更多新的要求,如以航空发动机与燃气轮机为代表的高端装备激光再制造技术。目前,我国激光再制造产业与制造业的产业规模不匹配,产业发展存在“小、散、弱”、应用领域少等问题,缺少规模大、技术实力强的国际龙头企业。我国激光再制造技术的应用和发展面临如下挑战。


(一)激光再制造专用材料发展落后

我国激光再制造专用材料“卡脖子”问题突出,具体表现为激光再制造粉材与丝材等专用新材料方面发展较为滞后,专有材料选择局限性较大,面临品种少、供应商少、高性能修复材料缺乏等问题,且专有材料的可靠性、稳定性普遍不高并缺乏验证。目前国外企业面向激光增材制造技术已开发出系列专用材料,如德国斯棱曼激光公司(SLM Solutions)已开发出铝基、镍基、钛基、钴基、铁基、铜基等系列激光增材制造材料,并与自产装备配套建立了稳定的工艺体系。国外的设备厂商在出口时通常采用“装备 + 粉末”的捆绑销售政策,使得我国在进口专用材料时价格昂贵,提高了产品成本,降低了在激光增材再制造领域的竞争力。


(二)核心装备及部件依赖进口

我国在激光再制造领域已具备一定的装备研发能力,但仍以面向工业应用的设备集成开发为主,其核心器件,如高光束质量激光器及光束整形系统、高品质电子枪及高速扫描系统、大功率激光扫描振镜、动态聚焦镜、阵列式高精度喷嘴 / 喷头等精密元器件仍然严重依赖进口,国产激光制造装备在工艺稳定性、环境温度控制等方面与进口品牌仍有较大差距。我国目前已有大族激光智能装备集团、华工激光工程有限责任公司等一批具有国际影响力的设备厂家,但高端激光装备市场仍以国外先进企业为主导,如通快集团(Trumpf)、阿帕奇公司(IPG)、美国相干激光公司(Coherent)、利泽莱恩激光公司(Laserline)等。


(三)企业对激光再制造技术的理解和认识不足

激光再制造技术为高端装备修复与再制造提供了新的解决方案,但该技术尚未被装备行业广泛接受和认可。具体原因有:一方面,部分传统装备企业对于新技术的敏感度较低,需要加强推广提高认识;另一方面,在某一装备领域引入激光再制造技术时,需经过严谨的科学分析与完备的工艺验证,盲目引入新技术将带来装备运行风险。另外,在产品全生命周期管理中,产品和材料设计需考虑零部件的维护保养与再制造,而传统装备部件在设计时并未考虑采用激光再制造进行部件维修,因此,部分装备部件受结构形式或材料选型方面的限制难以应用激光再制造技术。


(四)行业标准及体系不健全

在激光修复与再制造领域,我国已有《激光修复技术 术语和定义》、《激光修复通用技术规范》等国家标准以及部分机械行业标准和企业标准,但尚未建立完整的激光再制造技术标准体系,这制约了相关技术成果的累积、固化、推广和应用。由于欠缺统一的行业标准体系,部分企业在激光修复过程中对材料选型和工艺的科学考虑不足,导致修复件失效,造成财产损失甚至是安全事故,进而给激光再制造技术的行业推广带来了负面影响。


五、激光再制造技术的发展目标

近年来随着激光修复与再制造技术的不断发展,我国激光再制造产业已初具规模。经估算,2019 年我国激光修复与再制造产业规模约达到20 亿元,激光再制造技术在工业修复领域已经展现出巨大的应用潜力。未来随着修复质量、效率、智能化等方面的进一步提升,激光再制造技术将进一步得到推广和应用,对装备设计理念、产业结构、制造服务产生深远影响。考虑到技术、产业、理念的革新,激光再制造技术今后分阶段的发展目标如下。


(一)面向 2025 年的发展目标

对接《中国制造 2025》提出的再制造发展战略,针对高端装备关键零部件对提高修复质量和效率的迫切需求,解决目前激光再制造产业“小、散、弱”的现状,到 2025 年,激光再制造技术和产业的发展目标为:全面提高激光再制造装备、材料、工艺水平,不断满足不同工业领域关键零部件对高质量再制造、现场再制造、在役再制造技术的需求;提高激光再制造及其前后处理工艺的综合效率,满足高效再制造的需求;对接“两机”国产化战略,解决“两机”热端部件等核心部件修复需求;以规模化为发展目标,在技术发展和成本下降的基础上扩大应用领域、扩大产业规模。预计到 2025 年,我国整体激光再制造产业规模将达到 100 亿元。

面向 2025 年的重点发展方向为:在技术层面重点发展激光复合再制造及其关键装备、高速 / 超高速 / 宽带激光再制造装备与工艺、复杂形状热端部件高质量激光增材再制造技术、激光再制造过程中的同步检测与控制、恶劣现场环境下的激光再制造技术;形成激光复合装备制造业、修复服务业、修复专用粉材及丝材产业;激光再制造技术向多个领域及其零部件延伸,形成规模化的现场激光再制造服务行业。


(二)面向 2035 年的发展目标

制造业服务化已成为制造业转型升级的主要方向,而激光再制造技术是回收再制造服务的重要支撑技术。为了支撑分布式的激光再制造服务体系,到 2035 年,激光再制造技术和产业的发展目标为:智能化激光再制造技术趋于成熟,零部件激光修复实现自动便捷操作;激光修复与再制造技术形成标准化体系;面向不同工业领域对激光智能修复技术的需求,形成成熟的激光再制造产业链。预计到2035 年,我国激光再制造产业规模达到 500 亿元。

面向 2035 年的重点发展方向为:在技术层面重点发展缺陷自动识别与修复工艺智能规范技术、激光智能修复与再制造技术、激光再制造件寿命精确预测技术;形成激光再制造专用装备、智能化控制系统及软件、修复专用材料、再制造服务四大产业。


(三)面向 2050 年的发展目标

人与自然和谐发展是人类文明发展的必由之路,随着再生产品和循环经济理念的深入人心,再制造技术将走向普及化、家用化。到 2050 年,激光再制造技术和产业的发展目标为:小型化激光快速修复装备与配套工艺技术成熟;实现极端条件和环境下的激光再制造;以激光再制造为核心技术的制造服务在高端装备业普及化。

面向 2050 年的重点发展方向为:在技术层面重点发展细小损伤的精确监测以及微观组织层面的精密修复;深海、太空、两极等极端环境下激光再制造;高端装备销售业转型为高端装备服务业并成为主流;激光再制造技术支撑再生产品和循环经济的普及。


六、激光再制造技术发展建议


(一)加强战略层面的积极引导

建议加大对激光再制造专用材料、核心装备及部件等重点领域的财政支持力度。充分利用国家重大专项、国家重点研发计划等资金渠道,采用高校、科研院所、企业、用户相结合的方式,在不断推动通用型设备及工艺发展的基础上,重点支持面向典型易损件的专用激光再制造装备、材料及工艺的研发。


(二)建立激光增材再制造材料基因组体系

激光增材再制造技术的不断发展对专用材料提出了更高的发展要求。由于专用材料的非平衡亚稳态特性,与传统材料相比,专用材料的设计与研发难度更大、周期更长、过程也更复杂,传统的方法已难以满足现在的发展需要。因此,建议尽快建立具有自身特点的激光增材再制造材料基因组体系,提高专用材料的非平衡亚稳态特性,并建立具有自身基因组高通量的计算依据及理论。


(三)加快建立完善标准化体系和高层次应用型人才培养体系

建议提高对激光再制造技术及产品的研发、检验与认证的能力,努力促进标准化与产业紧密结合,建立完善的激光再制造产业发展标准体系。加强国际合作,积极对接国际标准化组织,开展相关标准的建立、转化及完善工作。同时,聚焦我国在激光再制造领域专门人才和行业规范欠缺的情况,依托国家现有人才培养与引进政策,不断完善高层次应用型人才的培养体系建设。


(四)加大应用推广力度,引导行业整合

建议将政府支持与各种行业资源相结合,加强我国激光再制造产业各分领域的联系,拓宽产业与政府、产业链上下游、产业之间以及生产企业和用户之间的对接通道,加快技术的推广应用。着重开展分层级、分领域的试点示范专项行动,点面结合,协同推进,积极引导和促进社会力量及地方政府的投入,共同推进激光再制造技术的深度应用,促进我国激光再制造产业的持续快速发展。


(五)加强“产学研用”协同创新,加快关键共性技术创新发展

建议在激光再制造、全生命周期制造等领域建立国家级研发平台,由高校、科研院所和骨干企业牵头,打通产业链的上下游,形成完整的材料、装备、工艺、检测、应用体系,加快对关键共性技术的攻关和创新发展。面向不同行业领域,设立各具特色的再制造产业联盟、再制造产品评估与检测中心以及协同创新中心等。


来源 : 中国工程院院刊 发布时间 : 2020-08-12

研究人员开发了世界上最紧凑的半导体激光器


近日,由ITMO大学的研究人员领导的国际研究人员团队宣布,在室温下的可见光范围内开发了世界上最紧凑的半导体激光器。根据研究团队作者描述,这种激光是只有310纳米大小的纳米粒子(比毫米小3000倍),可以在室温下产生绿色相干光,甚至可以使用标准的光学显微镜用肉眼看到。

值得一提的是,科学家成功地克服了可见光带的绿色部分,该文章的主要研究者,ITMO大学物理与工程学院教授谢尔盖·马卡罗夫(Sergey Makarov)表示:“在现代发光半导体领域,存在“绿色缺口”问题“,绿色间隙意味着,用于发光二极管的常规半导体材料的量子效率在光谱的绿色部分急剧下降,这个问题使由常规半导体材料制成的室温纳米激光器的发展复杂化。”

ITMO大学研究团队选择了钙钛矿卤化物作为其纳米激光的材料。传统的激光器由两个关键元素组成-允许产生相干激发发射的活性介质和有助于将电磁能长时间限制在内部的光学谐振器,钙钛矿可以提供这两种特性:某种形状的纳米粒子既可以充当活性介质,又可以充当高效谐振器。结果,科学家成功地制造了310纳米大小的立方体形状的粒子,当它被飞秒激光脉冲激发时,可以在室温下产生激光辐射。

ITMO大学的初级研究员,该论文的合著者之一Ekaterina Tiguntseva说。“我们使用飞秒激光脉冲泵浦纳米激光,我们辐照了孤立的纳米粒子,直到达到特定泵浦强度的激光产生阈值为止我们证明了这种纳米激光可以在至少一百万次激发周期内运行。” 研究团队所研制的纳米激光器的独特性不仅限于其体积小,新设计的纳米粒子还能够有效限制受激发射能量,为激光产生提供足够高的电磁场放大。

ITMO大学的初级研究员,文章的合著者之一Kirill Koshelev解释说:“这个想法是激光产生是一个阈值过程。也就是说,你用激光脉冲激发纳米粒子,在外部光源的特定“阈值”强度下,粒子开始产生激光发射。如果你不能把光限制在足够好的范围内,就不会有激光发射。在之前的其他材料和系统的实验中,但是类似的想法,它表明你可以使用四阶或五阶的Mie共振,这意味着在激光产生的频率下,材料中的光波长与谐振器体积匹配四到五倍的共振。我们已经证明了我们的粒子支持三阶Mie共振,这是以前从未做过的。换句话说,当谐振器的尺寸等于材料内部三个波长的光时,我们可以产生相干受激发射。”

另一个重要的事情是,无需施加外部压力或非常低的温度即可使纳米粒子用作激光。研究中描述的所有效应都是在正常的大气压和室温下产生的。这使得这项技术对专注于制造光学芯片、传感器和其他使用光来传输和处理信息的设备(包括用于光学计算机的芯片)的专家具有吸引力。

在可见光范围内工作的激光的好处是,在所有其他特性相同的情况下,它们比具有相同特性的红色和红外光源小。事实上,小型激光器的体积通常与发射的波长具有立方关系,并且由于绿光的波长比红外光的波长小三倍,因此小型化的极限对于绿光激光器要大得多,这对于为未来的光学计算机系统生产超紧凑组件至关重要。


发布时间 : 2020-06-10

2020年激光雷达市场现状与发展前景分析

二维激光雷达在服务机器人领域具有广阔应用空间。目前激光雷已经开始应用于物流机器人、商用清洁机器人、送餐机器人等移动机器人领域,尤其近两年来新兴的商用清洁机器人,激光雷达已经成为标配。

激光雷达种类

激光雷达是一种通过探测远距离目标的散射光特性来获取目标相关信息的光学遥感技术。激光雷达分辨率远高于摄像头、超声波雷达等传感器,被广泛应用于测绘、机器人、无人驾驶等领域。

按照激光雷达的扫描维度,激光雷达可分为一维激光雷达、二维激光雷达和三维激光雷达。

一维激光雷达主要用于距离测量,主要厂家如博世、徕卡等;二维激光雷达主要用于轮廓测量、定位和区域监控,主要厂家有日本Hokuyo、德国SICK、德国IBEO等;三维激光雷达则可用于三维动态建模,主要应用于移动机器人、无人驾驶等领域。

二维激光雷达在服务机器人市场应用前景广阔

二维激光雷达在服务机器人领域具有广阔应用空间。目前激光雷已经开始应用于物流机器人、商用清洁机器人、送餐机器人等移动机器人领域,尤其近两年来新兴的商用清洁机器人,激光雷达已经成为标配。

但在家用扫地机器人市场,激光雷达渗透率则较低,其主要制约因素为成本。目前市场上绝大部分扫地机器人使用的传感器为视觉摄像头及超声波传感器,其传感器成本仅需几元,仅有极少部分高端扫地机器人会使用到激光雷达,所使用的二维激光雷达的价格在几百到几千不等。

相对于超声波传感器和视觉摄像头,激光雷达的测距精度更高,不存在累计误差,构建的地图可以直接用于路径规划,且不受环境光影响。因此,激光雷达才更适合做扫地机器人的“眼睛”。

早在2009年,激光雷达就开始被尝试应用于扫地机器人领域。

Neato成立于2005年,是一家位于美国加州硅谷的机器人研发、制造公司。2009年,Neato发布了一款成本极低的激光雷达,利用激光发射器与接收器之间的三角测距方法测得与障碍物之间的距离,激光测距传感器安装在电机上,通过旋转测得一圈360°范围内的距离,并基于此绘制室内地图,以30美金的超低价格在机器人圈中引起不小的轰动。

经过多年的改进,旋转激光雷达方案已经成为Neato扫地机器人的重要特征。不过这种激光探头的最大缺点就是寿命短。虽然业界皆给予Neato高评价,但是由于激光探头的缺点,而且产品价格昂贵,所以Neato扫地机器人一直没能得以普及。

科沃斯2015年上市的地宝9系也采用了LDS激光雷达技术,可以精确构建地图,实现智能化清洁。

2019年,石头科技推出一款全新扫地机器人P5,P5搭载了Lidarvision专利激光雷达,能够360°全局巡航扫描,并对家中环境进行高精度测距与建图。

目前,在激光导航类扫地机器人市场,石头科技占据大部分市场份额。

除了国外企业日本Hokuyo、德国SICK外,目前国内厂商如镭神智能、思岚科技、探维、星秒等陆续加入了2D激光雷达研发队伍,其产品在成本上具有较大优势。

低成本、小型化推动激光雷达在服务机器人领域应用

固态化、小型化、低成本是激光雷达的主要未来发展趋势。目前,市场上的2D激光雷达主要为单线程激光雷达,主要应用于服务机器人领域,但价格仍普遍在几百元以上。激光雷达的固态化则能有效降低成本,同时缩小激光雷达体积。目前,固态激光雷达由于存在扫描角度有限、加工难度高、旁瓣问题、信噪比差等问题,短时间内难以应用推广。未来随着固态激光雷达技术进步,激光雷达在服务机器人领域市场应用有望加速。

以上数据来源于前瞻产业研究院中国激光雷达行业市场前瞻与投资战略规划分析报告


来源 : 前瞻产业研究院 发布时间 : 2020-05-26

激光在光伏行业中的应用:光伏背板玻璃激光钻孔技术

双玻组件自问世以来,便展现了其对抗严苛气候条件和安装暴力的“硬汉形象”,寿命长(30年寿命)、抗揍(不易产生电池隐裂纹)、PID衰减低,兼容双玻组件生产成为新设计产线绕不开的考虑条件。

刺激双玻组件需求增长的有利因素主要如下:

(一)在光伏行业对降低度电成本的不懈追求中,双面发电技术成为市场主流:双面PERC电池成为PERC产线标配,新型N型电池也主推双面技术路线,例如Top-con双面电池、HJT双面电池;双面技术对双玻组件的推广应用具有显著的促进作用,但少部分双面组件采用透明背板工艺;

(二)2019年6月,美国贸易代表办公室(USTR)批准的201条款对双玻组件和电池的关税豁免,明显推动了其它国家和地区对中国产双玻组件的需求。

TestPV对2020年全球双玻组件市场需求预计:3-4GW中国出口,5-6GW美国装机,10GW国内装机,5GW美国以外的海外市场供应,全部市场需求总额20-24GW

双玻组件的背板玻璃钻孔技术非常关键,目前主要有机械法和激光法,两种技术对比如下:

● 投入费用方面:机械钻孔固定投资低,但后期维护成本大,主要是因为需要更换易耗品玻璃钻头,另外机械法需要冷却水喷淋和收集装置;

● 加工孔类型和大小:目前加工需求有圆孔、方孔、腰形孔等异形孔,孔径3-30mm,激光钻孔均可自由组合切换;

● 加工良率:2.5mm厚度玻璃加工良率方面,激光法钻孔高于机械钻孔5%左右;光伏玻璃未来发展趋势为轻薄,市场已经在推广1.6mm-2.0mm的玻璃,采用机械钻孔的良品率会大幅下降,所以光伏玻璃厂商几乎都在寻求激光打孔解决方案;

● 加工品质和加工精度:激光加工具备无锥度孔,孔内壁干净、基本无粉尘残留、损伤低等优点,崩边指标明显优于机械钻孔,可开发缺陷检测功能;另外激光钻孔法精度高。

通过以上机械法和激光法的多方面对比,显然激光加工技术是双玻组件背板玻璃钻孔的主要发展趋势。大族光伏装备专注于光伏行业的激光精密加工技术开发及研究,针对光伏玻璃精密激光钻孔技术研发出整线系统。

该整线系统设备包含加速段、旋转定位、激光钻孔、玻璃圆孔倒角、旋转 、减速段等,可采用横竖两种方式进料;设备可实现高精度、高效率、低成本的连续生产;激光钻孔机拥有三头切割工位,可实现孔位置精度达±0.5mm,孔位误差稳定在±0.5mm,崩边小于或等于0.3mm,三孔激光钻孔加工时间(φ2.0mm)小于7s。

上图是以50X放大观察最大崩边。激光钻孔未形成锥度孔、孔内壁干净、基本无粉尘残留,其中激光出射面孔崩边在50μm左右,激光入射面孔崩边小于200μm。

激光钻孔法精度高、污染低,可以提高产品良率。激光钻孔完成后,进入倒角程序,倒角机对激光切割后的玻璃圆孔进行倒角加工。倒角机采用CCD系统进行精度为±0.01mm的定位,利用定制集成系统补圆弧倒角,可实现玻璃上下表面同时作业;全幅面内任意孔均可倒角,倒角效率高达0.2s/孔,倒角尺寸C为 0.2-0.5mm;设备的运行成本低,稳定性可靠。

目前为配合行业客户需求,大族光伏装备在整线系统还增设打孔后段的缺陷检测功能。随着光伏玻璃的市场需求量及光伏装机量的增大,光伏激光加工设备的需求也随之增加,并对加工技术和工艺提出更高 要求。大族光伏装备紧随光伏市场发展与客户需求,创新驱动、升级优化,不断为光伏行业提供高质量、创新性的激光加工解决方案。

来源 : 大族激光显视与半导体 发布时间 : 2020-05-12

高稳定性、低噪声锁模飞秒激光器用于时间分发

在过去几年中,由于受到热致模式不稳定性和非线性效应的影响,单一光纤放大器所能产生的平均功率、脉冲能量和峰值功率等性能指标,已经遇到难以克服的瓶颈。解决该问题的有效途径是利用多路光纤放大器分别放大超快脉冲,之后进行多光束相干合成。该技术有望显著提高超快光纤激光的性能参数(如高重复速率下的焦耳级脉冲能量),进一步拓展其更广泛的应用(比如应用于强场物理、激光粒子加速等)。

德国Jena课题组是该技术的开拓者。他们在2017年报道了利用集成化程度比较高的16个分离的光纤放大通道对光束进行放大再合束 [1],实验装置如图1所示。在主放大器之前,通过脉冲展宽器将脉冲展宽并用空间光调制器调节其相位,随后又经过3个PM980光纤、两个声光耦合器、2级模场直径分别为42 μm及56 μm的大轴距光纤进行了预放大,得到了50 w左右的功率。在该工作中,主放大器增益光纤为大模场面积棒状光纤。空间合成系统在分束时是用偏振分光器和半波片把光束先分为上下两束再进一步把上下的光束各分成并列的八束。为了提高合成效率和光束品质,该系统利用半波片及四分之一波片对非线性偏振旋转进行补偿;每个通道均有压电驱动的反射镜,用于稳定每路的相位。最终通过集成的布儒斯特型薄膜偏振器完成合束后,再利用Treacy型光栅压缩器对脉冲进行压缩。

图1 基于16个单一光纤放大器的多路相干合成掺镱超快光纤激光系统

在合束结果方面,空间合成系统最终的总功率为1830 w,合束效率为82%,光谱宽度10.2 nm(图2左),脉冲宽度为234 fs(图2右),其变换极限脉宽为200 fs。未进行最终合束的上下两层光束功率均为1 kw左右,上下两层的合束效率分别为95%和91%,光束的质量因子均为1.3。

图2 合束后光谱(左)和自相关曲线(右)

光束为偏椭圆形的高斯光束(图3左),光束的质量因子大约为3,质量较差,主要来源于用于合束的偏振器的热效应(图3右)。将来可以通过将该偏振器换成具有低吸收镀膜的薄膜偏振器,避免热透镜效应;另一个可改进之处是将最后的透镜式telescope换成mirror telescope。通过这两项改进,可以提高光束质量,有望获得2 kw功率、合束效率90%且光束质量因子小于1.3的高能量飞秒脉冲。

图3 空间合成后的光束(左)和展示了热透镜效应的TFP热成像图(右)

为了进一步小型化该系统,Jena课题组对上述方案进行了重大改进,改进后的系统如图4所示 [2]。

图4 基于集成器件的16通道相干合成掺镱超快光纤激光系统

该系统放大的主体部分是多纤芯的掺镱光纤(如图5所示),集成化程度更高,显著降低了系统的复杂程度。

图5 16纤芯光纤端面示意图

(a)光纤端面 (b)放大的自发辐射 (c)放大信号输出

该系统使用两组分段镜面分束器将一束入射光在空间上分成16个光束。这种分束器由一块高反镜以及一个包含并排的四种不同反射率区域的镜面组成,反射率分别为0、50%、66%、75%,把初始光束分为4×4的矩阵,再用偏振分光器或4焦距系统来调节光束矩阵的间距,送到多纤芯光纤的端面。

多纤芯光纤合成系统则将光束通过了一个4×4的压电调控镜面矩阵来维持相位稳定(图6),借由镜面反射过程中发生的光束水平竖直方向翻转减小了在最后telescope处的球差。镜面矩阵之前放置了透镜矩阵,把镜面安装时微小的倾斜转化为横向的光束偏移,从而减小光束矩阵的畸变。之后,利用四分之一波片调节光束的偏振。为避免各个通道之间存在热耦合,该课题组优化了纤芯直径以及各纤芯之间的间距。整个系统为filled-aperture结构,有利于提高合束效率。

图6 用于相位调节反馈的信号光束(未良好干涉光束,多为高阶模光束)

经过多纤芯光纤放大后的光束又一次经过两级分段镜面,从而把16束光合束,其光束质量因子小于1.2(图7左),可以获得近衍射极限大小的光斑(图7右)。

图7 多纤芯光纤系统光束M2测量(左)和合成后光束(右)

目前基于多纤芯光纤的合成系统还处于发展初期,Jena课题组只是进行了原理验证。在该实验中,系统平均功率仅有70 w功率,脉宽为40 ps,合束效率为80%。多纤芯光纤合成系统的进一步研究,依赖于提高多纤芯光纤的制造工艺,使得纤芯矩阵排列更均匀,同时减小高阶模传输带来的损耗,并避免不同纤芯间的模式耦合。增加多纤芯光纤的纤芯数量也有利于进一步提高功率,但也要仔细研究如何对该种光纤进行热量管理。

参考文献:

[1] M. Mueller, A. Klenke, H. Stark, J. Buldt, T. Gottschall, J. Limpert, and A. Tünnermann, "16 Channel Coherently-Combined Ultrafast Fiber Laser," in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper AW4A.3.

[2] A. Klenke, M. Müller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, A. Tünnermann, and J. Limpert, "Coherently combined 16-channel multicore fiber laser system," Opt. Lett. 43, 1519-1522 (2018)

来源:光波常 ,作者贾雪琦

来源 : 光波常 作者: 贾雪琦 发布时间 : 2020-03-18

返回顶部