激光协会
首页 > 产业交流平台

国外用世界首个硅激光器打造光子芯片,可将光通信速度提高千倍

几十年来,“硅发光”一直是微电子行业的圣杯,解决这个难题将彻底改变计算,因为受益于此,芯片将变得比以往任何时候都快。

近日,埃因霍温理工大学(TU/e)的研究人员现在已经开发出一种硅合金,这种硅合金可以发光,实现光子传输。该团队现在将在此基础上开发一种硅激光器,集成到当前芯片中。

1586769290846151.jpg

  图源:埃因霍温科技大学

光子通信代替电子通信,芯片提速1000倍

目前以半导体为基础的技术正在达到顶峰,但限制因素是热量。

在电子电路中,数据通常通过电子流传输,而电子流在通过芯片晶体管的铜线和许多电阻时,会产生大量热量。这意味着数据量越大,电子流传输产生的热量越多。若要继续推进数据传输,则需要一种不产生热量的新技术——光子传输。

最近,埃因霍温科技大学的一项新研究表明,硅可以发射光子来传输数据,传输过程中并不会带来热量,可以消除高能耗芯片与芯片间通信带来热量过多,导致传输缓慢的问题。

1586769318376047.jpg

  使用光学装置来测量发射的光

  图源:埃因霍温科技大学

光纤中通常是通过光子来携带信息而不是电子。与电子相反,光子不经历电阻,由于它们没有质量或电荷,它们在所通过的材料中的散射会更少,因此不会产生热量,能源消耗将减少。

此外,通过用光通信代替芯片内的电子通信,芯片内和芯片间通信的速度可以提高1000倍,数据中心将受益匪浅,数据传输速度更快,冷却系统能耗更低。而且这些光子芯片也将带来触手可及的新应用,想一想激光雷达自动驾驶汽车和化学传感器的医疗诊断、测量空气和食品质量。

不过,在芯片中使用光需要集成激光器,但计算机芯片的主要半导体材料硅在发光方面效率极低,因此硅长期以来被认为在光子学中不起作用,而光子芯片也迟迟没能成为现实。

于是,科学家们开始转向了能隙宽的半导体,例如砷化镓和磷化铟,两者都擅长发光。一个欧洲财团的研究人员对砷化镓的量子光子波导电路进行了实验,还有加利福尼亚大学圣巴巴拉分校的研究人员也研究了高功率磷化铟光子集成电路。

但砷化镓和磷化铟的根本问题在于,它们很难集成到现有的硅微芯片中,不能与硅很好地发挥作用,而且两者本身都很昂贵,成本实在太高。

因此,埃因霍温科技大学的研究人员认识到,硅仍然是当今制造绝大多数IC的首选材料,如果硅也可以发射光子并由此增强数据通信,同时消除热量问题,对于设计者来说,可是莫大的福音。


突破:六角形硅锗终于发光

接下来,研究人员开展了数年对这种发光硅解决方案的研究。

他们遇到最大的问题是硅的间接带隙阻止了硅的发光,为此,他们把目光投向了将硅与锗结合成六边形结构的方法,希望从而实现发射和透射光的直接带隙。

来自TU/e的首席研究员Erik Bakkers说:

“关键在于所谓的半导体带隙的性质,如果电子从导带‘滴’到价带,半导体就会发出光子。但是,如果导带和价带相互位移(称为间接带隙),就不能像硅那样发射光子。不过,一个50年前的理论表明,与锗合金并形成六边形结构的硅确实具有直接的带隙,因此可能会发光。”

但显然理想与现实往往不是同一回事。2015年,埃因霍温科技大学的研究人员发表了一篇论文,论证了将磷化镓制成的六角形外壳用作六角形硅的模板。他们成功地在六角形外壳中生产了硅,但事实证明该外壳无法透射或发光。

不过,近期该研究迎来了转机。在Erik Bakkers的带领下,许多相同的研究人员已经设法制造出一种改进的六角形硅锗壳。当由外部激光器激发时,所得的硅锗纳米线实际上能够透射光。

3.jpg

  硅锗壳制成的光导纳米线

  图源:埃因霍温科技大学

根据Bakkers的说法,下一步是创建实际的激光来激发纳米线,当然,所谓纳米线就是指硅。


2020年,世界首个硅激光器将现

六角形SiGe合金的发射非常有效,适合开始生产全硅激光器。但直到现在,还不能使它们发光。Bakkers团队正在通过减少杂质和晶体缺陷的数量,设法提高了六角硅锗外壳的质量,当用激光激发纳米线时,他们可以测量新材料的效率。

1586769390262473.jpg

  图源:埃因霍温科技大学

AlainDijkstra是第一作者,也是负责测量光发射的研究人员,他说:“我们的实验表明,这种材料结构正确,没有缺陷,它能非常有效地发光。”

Bakkers说:

“到目前为止,我们已经实现了几乎可以与磷化铟和砷化镓相媲美的光学性能,并且材料的质量正在急剧提高。如果运行平稳,我们可以在2020年制造出硅基激光器。这将使光学功能与主流电子平台紧密集成,这将打破片上光通信和基于光谱学的价格合理的化学传感器的开放前景。”

如此一来,成功研发出硅激光器,也只是时间问题。

来源 : 传感器专家网 发布时间 : 2020-04-17

应用于大功率激光器单管和Bar条芯片封装的贴片解决方案

原文发表于Laser Focus World 2020第二期2月18号,此版本与原文略有不同

  作者:MRSI Systems 周利民 limin.zhou@mycronic.com; www.mrsisystems.com.




      1. Introduction 前言

  高功率激光二极管(HPLD)是当今增长最快的激光器类型之一,主要是因为随着光纤激光器已逐渐成为材料加工应用的首选工具,用于光纤激光的泵浦光源需求不断增长。 HPLD还广泛地应用于医疗领域,例如光动力疗法,激光美容和外科手术,以及包括涂覆,3D打印,切割和焊接在内的直接半导体激光器材料加工。 HPLD的另一个应用领域是国防工业,其增长由定向能量武器驱动。 HPLD提供的波长范围是400nm至2000nm,光输出功率范围为1W至300 + W是任何其他激光器所无法比拟的, [1],其在最小的体积内具有最高的电光(EO)转换效率(高达65%)。由于这些独特的性能,HPLD可以适应其迅速增长的各种应用。根据分析师Nilushi Wijeyasinghe博士“2019-2029年激光二极管和直接二极管激光器:技术,市场&预测''的报告显示,到2029年,激光二极管和直接二极管激光器的全球市场规模将达到139.85亿美元,其中激光二极管占119.52亿美元,直接二极管激光器占20.33亿美元。

  2. 关键工艺的挑战

  贴片工艺是HPLD制造中最关键的封装步骤。 在此过程中,采用金-锡共晶贴片工艺将单管或Bar条芯片连接到散热基板。 芯片和散热基板之间的接合通常是使用共晶贴片技术的金锡(AuSn)焊料。 HPLD芯片可以是单管激光芯片,也可以是多管的bar条激光芯片。 贴片工艺对于HPLD产品的光学效率和现场可靠性至关重要。 下面重点介绍此关键过程的一些挑战:

  高精度:

  HPLD在单管或bar条芯片的发光面与散热器基板边缘之间具有高精度的位置要求。 通常,贴片后结果从发光面到基板边缘应该没有凹陷,并且发光面的突出部分应小于5-10μm。 为此,贴片机的贴片精度通常应<±2.5μm。 而激光管芯和衬底的边缘也可能具有<1μm的公差。 因此,机器的精度必须<±1.5μm。

  共晶质量:

  除了位置精度外,回流工艺中的温度曲线对于HPLD贴片工艺也非常关键。 在共晶过程中,需要特别注意在芯片和散热基板之间实现细微,均匀且无空洞的共晶界面,以便有效且均匀地散热。 这就要求贴片机对整个贴片区域具有精确而均匀的共晶回流温度控制。HPLD贴片过程需要具有快速升温/降温的可编程均匀共晶加热台,并且共晶期间的温度必须保持稳定。 加热阶段还必须具有保护气体覆盖,以防止共晶表面氧化,从而获得良好的锓润性,并在冷却时形成无空洞的界面。

  共面性&无空洞:

  随着HPLD芯片功率的增加,单管芯片变得更长,某些芯片尺寸长宽比也变得越来越大,例如长宽比>10。Bar条类的HPLD是极具挑战性的,因为它的结合表面积大,放大了键合后的特性缺陷,如空洞率%和Bar条倾斜角度。。 HPLD单管或bar条芯片与散热基板之间的准确共面性也非常关键,因为它会影响空洞率和引起应力。 因此,缺乏准确共面性会影响HPLD产品的性能和可靠性。 如果没有良好的共面性控制,由于共晶后在bar条中形成的残余应力,bar条可能会发生翘曲,通常被称为“微笑”曲线[3]。 长芯片可能会产生散热不均的情况,从而沿单管芯片长度方向产生热应力。 在共晶回流期间,各种尺寸的单管芯片或激光bar芯片需要不同的贴合力和精确的受力控制。

  高混合&快速生产

  当前,HPLD行业处于快速发展过渡状态,由于缺乏标准化,生产厂家必须应对需求增长和复杂多样的产品封装形势。 由不同供应商设计的工业HPLD-单管芯片到基板(CoS),和Bar条到基板(BoS)有很多变化。 HPLD封装设计具有更多的封装形式以适合不同的应用。因此,高混合生产是HPLD制造的又一重大挑战。

  3. 贴片方案

  为了应对HPLD应用中的这些贴片工艺的挑战,生产商需要一种超高精度,高速,高度灵活的全自动贴片机。 机器要求包括精度<±1.5μm,可编程力控制,共晶阶段的摩擦运动(在受控力的作用下沿X,Y,Z的微小运动)等特性。 因此,贴片机供应商试图提供更好的设备来满足这些要求。 在这里,MRSI-H-LD 1.5μm全自动贴片机提供了很好的解决方案。

  1.5 μm High-speed Die Bonder 1.5μm高速贴片机

  MRSI设计的针对HPLD贴片工艺应用的MRSI-H-LD 1.5μm全自动贴片机, 机器精度在3Sigma下为±1.5μm。 因为有一些并行过程可以缩短机器的循环时间,CoS的 UPH通常大于150(取决于应用程序)。

  脉冲加热台

  MRSI-H-LD提供了独特的脉冲加热快速升降温共晶台,该加热台有90-95%的氮-氢混合气体作为保护气,可用于防止结合表面的氧化。采用化合共晶材料使贴片过程的温度最低化,该典型温度通常约为315℃。 加热台可编程至最高400°C,共晶面板上温度均匀。MRSI-H-LD设计的是持久而稳定的加热台。

  闭环受力控制和可编程摩擦共晶

  MRSI-H-LD贴片机提供的是具有实时闭环力反馈和具有可调节功能的可编程焊头,可实现对III-V族半导体器件的精细化处理,按器件类型对贴合力进行编程,这意味着每个大尺寸高功率激光芯片可以通过其独有的编程和控制力来吸取和放置。

  MRSI-H-LD贴片机还提供特殊设计的自平衡调节吸头工具,该工具可保持良好均匀的粘结力,并且排出空气,减少空洞。该应用在整个芯片表面上施加均匀的粘结力,从而产生具有高芯片剪切强度的无空洞共晶贴片。这是实现准确共面的绝佳技术。

  MRSI-H-LD贴片机独有的摩擦共晶解决方案,可以实现粘接面无空洞,解决共面难题。摩擦共晶是在将芯片放置到基板上的过程中同时对其施加垂直和横向力的运动。可编程的摩擦共晶方案具有一个应用程序库用于客户化定制XYZ和θ的运动参数,可根据不同的芯片和基板条件完美地共面。在任何条件下都可以实现完美的无空洞的共晶工艺。

  在一台机器上灵活无切换的完成单管及Bar条芯片的贴片

  MRSI-H-LD贴片机具有独一无二的独特功能,可在运动中更换吸头,以处理不同形状和尺寸的部件,而无需进行设备更换或停机。该系统提供行业领先的产出量和出色的灵活性,能够在一台机器上完成单管芯片对基板的CoS,Bar条对基板的BoS, C-mount封装,以及其他种类HPLD的封装。

  4.实验和性能结果

  以下介绍使用MRSI-H-LD贴片机的实验和结果。以玻璃芯片检查机器的精密性能。试验完成了芯片对基板CoS,Bar条对基板BoS, C-mount封装的贴片工艺。并测量了芯片键合关键位置精度结果,以及测试了空洞率的%结果和HPLD bar条芯片的平面度轮廓。

 A. 机器精度

  该实验介绍了验证设备精度的典型方法。玻璃芯片实验结果是基于15个数据点的样本量。 X和Y方向上的贴放重复性分别为<1 μm和0.5 μm(@3σ)。

  Figure 1: X和Y玻璃芯片贴放数据

  B. Chip-on-Submount (CoS)

  MRSI-H-LD贴片机还具有芯片倒装功能,并且可以完成腔面朝上和腔面朝下的工艺。 本节介绍了腔面朝上的CoS贴片方法,以下是典型的工艺要求。 在图2中,CoS尺寸从A(激光光发射面)到C(AuSn层表面边缘)是激光芯片悬伸,这对于HPLD贴片非常关键。 10个CoS贴片结果显示,共晶贴片后精度为<±3 μm @3σ,无凹陷,突出量<4 μm。



Figure 2:  图中显示了关键的贴片尺寸

  除了几何位置分析之外,我们还对样品进行了超声扫描显微镜(SAM)测试,以检测焊接界面中的空洞百分比。图3描绘了对单管激光芯片(4mm x500μmx120μm)AuSn共晶贴片到AlN基板在Sonoscan D-9000系列C-SAM机器上拍摄的图像。


  CoS空洞率测试的Sonoscan结果

  左图是经过处理的图像,右图是使用Sonoscan D-9000 C-SAM机器测量的原始图像,该表显示了空洞率百分比的结果。 如表中所示,贴片后的空洞率超过了MIL-STD 883K方法2030.2规范,并且还通过了更严格的HPLD空洞率指标。

  贴片封装的可重复性,准确性和空洞率是HPLD芯片贴片的关键性能指标,在这些性能满足的基础上,还必须实现快速交付。 在此示例中,采用了典型的共晶贴片工艺温度曲线,总循环时间在23秒或> 150UPH的范围内。

  C. 单管芯片到 C-Mount的封装

  本节概述了在将单管LD芯片粘合到由CuW制成的 C-mount封装上获得的结果。 在这个实验中,将尺寸为2mm x500μmx0.12μm的LD单管芯片贴装到尺寸为6.35mm x 2.18mm x 6.86mm(L xW x H)带有预沉积的AuSn焊料的 C-mount上。 从9个单管芯片贴片到C-mount上的结果表明,在3σ时芯片悬垂<4.3μm。贴片后测量关键的参数均在规格范围内。

  除了贴片的精度,我们也使用SAM和Sonoscan D-9000系列测量工具测量了焊接界面中的空洞百分比。 图4显示了从机器拍摄的图像。 左边是经过处理的图像,右边是原始图像,下表是空洞百分比的测量。

  C-mount空洞测试的Sonoscan结果

  空洞百分比的结果总结体现在表4中。贴片后空洞百分比超过了MIL-STD 883K方法2030.2规范,达到了更严格的HPLD指标。

  D. Laser Bar on Submount 激光Bar条到基板的封装

  本节概述了使用MRSI-H-LD全自动贴片机进行HPLD bar条封装结果。用预沉积的AuSn焊料将HPLD bar条样品贴装在CuW基座上。HPLD bar条尺寸为10mm x 2mm x130μm(L xW x H),CuW底座尺寸为10.6mm x 4.0mm x 0.25mm(L xW x H)。

  MRSI-H-LD设计了一种自平衡的吸头,通过在整个贴片表面上施加均匀的压力来降“低微”笑曲线效果,从而保持了激光芯片与基板的准确共面。图5显示了已封装的激光bar条的平面度轮廓。在发出激光出射的前端面边缘处,平坦度在130μm±1μm的范围内,机械“微笑”曲线在<2μm范围内,这对于AuSn共晶贴片是可接受的。低微笑曲线可提供更高的光束质量,因此是所有高功率应用的关键指标[4]。

  Figure 5: 用VR5000 3D表面轮廓仪测量的HPLD bar条的平坦度轮廓(由Keyence提供)

  在LD bar的整个长度上的线性偏移或偏邪是一个重要的参数指标,因为LD bar 的聚焦光束大小将因该偏移而变化[4]。 通常,laser bar的边缘到边缘的线性偏移应小于5μm。 根据实验结果,线性偏移测量值为3.8μm(3σ),完全在规定范围内。

  5.  总结

  实验结果表明,MRSI-H-LD贴片机为解决HPLD的所有管芯贴片工艺难题提供了一个很好的解决方案。机器玻璃芯片精度为<1 μm @ 3 sigma,优于规格的1.5 μm @ 3 sigma,COS和 C-mount贴片的悬伸分别小于4和4.3 μm,而且Bar条的线性偏移为3.8 μm (优于

  参考文献:

  1. Victor Rossin, et. al, “Chapter 5: Laser Diode Basics and Single-emitter performance”, High-Power Laser Handbook, Injeyan, Goodno -McGraw Hill, 2011.

  2. Hans-Georg Treusch, Rajiv Pandey, “Chapter 6: High-Power Diode Laser Arrays”, High-Power Laser Handbook, Injeyan, Goodno -McGraw Hill, 2011.

  3. Xingsheng Liu, et. al, “Chapter 4: Thermal Stress in High Power Semiconductor Lasers” Packaging of High Power Semiconductor Lasers, Springer Science, 2015

  4. Peter Loosen, Alexander Knitsch “Chapter 4: Incoherent Beam Superposition and Stacking” High Power Diode Lasers: Technology and Applications,– Springer Science Series, 2007


来源 : Laser Focus World 发布时间 : 2020-04-16

激光加工技术加速了钣金车间生产自动化的进程

几乎在激光诞生的同时,1962年美国Unimation公司推出首台工业机器人。此后,机器人技术经历了一系列不断的发展过程。直到20世纪90年代全球信息化浪潮风起云涌,计算机技术、微电子技术、网络技术和先进制造技术等快速进步,工业机器人技术也得到了飞速发展。它具有重复性精确生产特征,适应制造业中规模化批量生产要求,装配在生产线上代替人工作业,不仅解除了工人的繁复劳动,而且提高了生产质量。它可以流动作业,适应个性化生产需求。目前工业机器人技术日趋成熟,已经成为一种标准设备而广泛应用于工业界。

近年来激光技术飞速发展,涌现出可与机器人柔性耦合的光纤传输的高功率工业型激光器。先进制造领域在智能化、自动化和信息化技术方面的不断进步促进了机器人技术与激光技术的结合,特别是汽车产业的发展需求,带动了激光加工机器人产业的形成与发展。

从20世纪90年代开始,德国、美国、日本等发达国家投入大量人力物力进行研发激光加工机器人。进入2000年,德国KUKA,瑞士的ABB,日本FANUC等机器人公司均研制激光焊接机器人和激光切割机器人的系列产品。目前在国内外汽车产业中,激光焊接机器人和激光切割机器人已成为最先进的制造技术,获得了广泛应用。

AL激光加工技术加速了钣金车间生产自动化的进程

德国大众汽车、美国通用汽车、日本丰田汽车等汽车装配生产线上,已大量采用激光焊接机器人代替传统的电阻点焊设备,不仅提高了产品质量和档次,而且减轻了汽车车身重量,节约了大量材料,使企业获得很高的经济效益,提高了企业市场竞争能力。在中国,一汽大众、上海大众汽车公司也引进了激光机器人焊接生产线。目前有沈阳新松机器人公司涉足激光切割和焊接机器人制造领域。

随着激光直接制造和再制造技术的发展,面对航空航天、冶金、汽车等行业快速原型和快速制造的需求,从2002年起,国际上开始研发激光熔覆机器人。我国是世界上最大的发展中国家,拥有千万套国产大型贵重装备和进口高精尖的昂贵设备,现场快速修复有广阔的市场需求。天津工业大学在天津市科技支撑计划和国家自然科学基金资助下,开展了激光再制造机器人的研究。

钣金车间传统的加工方式是采用剪板、冲裁和折弯的工艺流程。其中冲裁工艺流程需要大量的模具,而在钣金车间中的冲裁具有少切削及无切削的工艺特征,十分重要。这样在一个产品加工完成之中一般会需要配备几十套,有的产品可能会需要上百套的模具。时间上模具本身需要一定的设计和制造周期,而产品还要有一定的试制周期,这样就造成耽误了大量的时间,从经济角度来说,配备大量的模具,产品的成本就很相应的提高,造成成本的浪费。所以在整个市场竞争激烈的环境下,就急需一种新的加工方法取而代之。

综合上述的原因,激光加工技术便在钣金车间中应运而生,激光加工技术的最大特点是无需模具便可加工,采用激光加工落料省去了大量模具的使用,而且激光加工机器人的加入使得车间生产进入自动化,使生产时间和产品成本缩短降低,更好的在市场中取的优势,非常有利于多种类小批量的产品生产,及之后的大批量的产品生产。


来源 : 电子说 发布时间 : 2020-04-15

欧洲科研团队推出发光硅锗合金,使硅激光器触手可及

根据CSC化合物半导体消息,来自埃因霍温技术大学(TU/e)和慕尼黑技术大学(TUM)的一个团队目前已成功开发出发光的硅锗合金。因此,能够集成到当今芯片中的硅激光器的开发是第一次触手可及。

  在过去的半个世纪里,研究人员试图制造硅基或锗基激光器,但没有成功。硅通常在立方晶格中结晶。这种形式不适合把电子转换成光。

  埃因霍温技术大学的研究人员与慕尼黑技术大学、杰纳大学和林茨大学的同事一道,现已开发出由锗和硅制成的能够发光的合金。

  关键的一步是用六方晶格的锗和硅生产锗和合金的能力。“这种材料有一个直接的带隙,因此可以自己发光,”TUM半导体量子纳米系统教授乔纳森·芬利说。

欧洲研究小组开发了发光硅锗合金,其性能几乎与InP或GaAs相当

  模板技巧

  埃里克·巴克斯和他在图埃因霍温的团队早在2015年就首次生产了六角硅。他们首先用另一种材料制成的纳米线生长出六角晶体结构。作为锗硅外壳的模板,底层材料施加在其六边形晶体结构上。

  然而,最初,这些结构不能被刺激发光。通过与慕尼黑技术大学沃尔特·肖特基研究所(Walter Schottky Institute)的同事们交换意见,他们分析了每一代人的光学特性,最终将生产工艺优化到纳米线确实能够发光的完美程度。

  巴克斯说:“与此同时,我们的性能几乎可以与InP或GaAs相媲美。”。因此,用锗硅合金制造的、能够集成到传统生产工艺中的激光似乎只是一个时间问题。

  乔纳森·芬利说:“如果我们能够通过光学手段实现芯片内和芯片间的电子通信,速度可以提高1000倍。”。此外,光学和电子学的直接结合可以大大降低自动驾驶汽车中激光雷达芯片、医疗诊断用化学传感器以及空气和食品质量测量的成本。


来源 : 讯石光通讯 发布时间 : 2020-04-13

解密智慧医疗“硬科技”,看光峰科技激光大屏如何助力战“疫”

“新冠”疫情的突袭,让人们更为深刻地意识到,生命健康是大事,经济社会和各行各业的顺利发展,离不开医疗健康行业奠定的坚实基础。医疗系统作为与疫情防控工作密切相关的单位,直接承担着各方救治和防控的重任。

疫情防控期间,依托远程会诊系统、5G传输、大数据、物联网追踪等相关手段,智慧数字技术手段为疫情大数据处理、诊疗会议、资源调度、信息互联互通等方面发挥了重大作用。疫情不仅给国家医疗系统带来了深刻的影响,且将刺激医疗系统的加快升级与变革。

那么,作为医疗系统中重要的显示技术部分,激光显示大屏将如何助力医疗体系升级?

实现大数据可视化,辅助医疗信息研判

本次疫情阻击战的背后,大数据采集、信息化分析在辅助疫情研判、创新诊疗模式、提升服务效率等方面正在发挥作用。

在医疗显示系统方面,激光大屏显示系统可担任指挥调度、资源配置、预测预判的重要角色,高效处理包括疫情大数据发布、人员轨迹、实时追踪在内的大数据信息,还可用于与各级政府、医疗单位的视频会议等。下图为常州医疗大数据中心运用光峰科技激光显示大屏系统进行信息化运作应用场景。

该项由光峰科技设计的激光显示大屏系统方案,具有高亮、高清、高可靠性等优势;其强大的信号处理能力,可以通过处理后台复杂的多路信号,实现海量信息的集中管控、高效处理、准确显示等,包括疫情大数据发布、患者分布、人员轨迹、实时追踪在内的大数据信息,有助于疫情防控工作高效展开,提高预警防控安全风险的能力。

(医疗大数据中心系统结构图)

从医疗大数据中心系统结构图可以看出,光峰科技激光显示大屏方案通过互联网信号传输,还可建立起省、市及其他各级单位的联系,打通各单位信息传输通道,与各地实现信息互通互联。在智慧城市建设高速发展的趋势下,医疗系统的信息即时连通亦成为至关重要的一环。

疫情期间,光峰科技也运用专业技术,向深圳疾控中心提供了激光显示大屏,助力一线抗疫防控工作的高效开展。

助力手术示教系统升级,帮助医疗人员提高业务能力

对于年轻医生来说,现场观摩专家做手术是非常有效的学习方式。但因为手术室空间有限和无菌化严格要求,可容纳人数少,观摩学习机会难得。而“示教室”显示解决方案的出现,正是突破传统手术示教空间限制,利用激光大屏与视频采集技术来实现手术的显示管理,以为临床医师提供更多的手术观摩机会,帮助提升手术教学的精确性,且还可进行实时互动。

(示教室系统结构图)

由光峰科技激光大屏所打造的手术示教室方案,主要用途为手术观看及医疗培训,最大可容纳近百人同时参与,对显示设备有高亮度、高色域、高稳定性等硬性要求。该方案通过搭建高清混合矩阵、音频处理器、网络管理与信号数字化功能组合,把手术信息采集转换并传输到激光高清大屏。通过大屏直播,观摩者们就能看到高清手术过程,以达到沉浸式观摩学习、优质医疗资源实时共享等目的,全面提高医疗队伍的专业能力。

助力医疗环境改善,加强现代医院人文关怀

以术前麻醉室为例。对于大多数人来说,进入手术室是一件极度紧张的事情。对成人如此,对儿童更甚,甚至会留下心理创伤。

2020年初,在深圳市儿童医院,光峰科技通过激光显示大屏方案,把海底世界“搬”进医院,打造了一个创意麻醉诱导间,这是激光显示技术用于儿童医疗领域的一次有意义的尝试,将有助力医疗环境的改善,加强现代医院的人文关怀。

进入手术室之前,小患者将在父母陪同下来到麻醉诱导间,躺在手术推车上,仰面看到的是神奇的海底世界,当注意力被吸引瞬间,医生也悄悄完成了术前麻醉工作。其所营造出的轻松有趣的氛围,不但消除孩子对医院的恐惧,提高孩子的配合度,有效缓解了患儿术前焦虑,而且增加了医护人员的工作效率。

除此之外,激光显示大屏还可在视频远程会议、远程医疗、学术汇报等方面发挥作用。

从疫情中的数字医疗场景应用可以看出,数字化医疗服务的重要性进一步凸显,智慧医疗时代正在加速赶来。类似激光显示大屏系列科技力量的运用,是帮助医疗单位进行数字化高效管理的重要手段,也将有利于疫情后期城市防控体系、医疗系统在设备方面的整体提升。


来源 : 红刊财经 发布时间 : 2020-04-12

应用于大功率激光器单管和Bar条芯片封装的贴片解决方案

原文发表于Laser Focus World 2020第二期2月18号,此版本与原文略有不同

  作者:MRSI Systems 周利民 limin.zhou@mycronic.com; www.mrsisystems.com.

      1. Introduction 前言

  高功率激光二极管(HPLD)是当今增长最快的激光器类型之一,主要是因为随着光纤激光器已逐渐成为材料加工应用的首选工具,用于光纤激光的泵浦光源需求不断增长。 HPLD还广泛地应用于医疗领域,例如光动力疗法,激光美容和外科手术,以及包括涂覆,3D打印,切割和焊接在内的直接半导体激光器材料加工。 HPLD的另一个应用领域是国防工业,其增长由定向能量武器驱动。 HPLD提供的波长范围是400nm至2000nm,光输出功率范围为1W至300 + W是任何其他激光器所无法比拟的, [1],其在最小的体积内具有最高的电光(EO)转换效率(高达65%)。由于这些独特的性能,HPLD可以适应其迅速增长的各种应用。根据分析师Nilushi Wijeyasinghe博士“2019-2029年激光二极管和直接二极管激光器:技术,市场&预测''的报告显示,到2029年,激光二极管和直接二极管激光器的全球市场规模将达到139.85亿美元,其中激光二极管占119.52亿美元,直接二极管激光器占20.33亿美元。

  2. 关键工艺的挑战

  贴片工艺是HPLD制造中最关键的封装步骤。 在此过程中,采用金-锡共晶贴片工艺将单管或Bar条芯片连接到散热基板。 芯片和散热基板之间的接合通常是使用共晶贴片技术的金锡(AuSn)焊料。 HPLD芯片可以是单管激光芯片,也可以是多管的bar条激光芯片。 贴片工艺对于HPLD产品的光学效率和现场可靠性至关重要。 下面重点介绍此关键过程的一些挑战:

  高精度:

  HPLD在单管或bar条芯片的发光面与散热器基板边缘之间具有高精度的位置要求。 通常,贴片后结果从发光面到基板边缘应该没有凹陷,并且发光面的突出部分应小于5-10μm。 为此,贴片机的贴片精度通常应<±2.5μm。 而激光管芯和衬底的边缘也可能具有<1μm的公差。 因此,机器的精度必须<±1.5μm。

  共晶质量:

  除了位置精度外,回流工艺中的温度曲线对于HPLD贴片工艺也非常关键。 在共晶过程中,需要特别注意在芯片和散热基板之间实现细微,均匀且无空洞的共晶界面,以便有效且均匀地散热。 这就要求贴片机对整个贴片区域具有精确而均匀的共晶回流温度控制。HPLD贴片过程需要具有快速升温/降温的可编程均匀共晶加热台,并且共晶期间的温度必须保持稳定。 加热阶段还必须具有保护气体覆盖,以防止共晶表面氧化,从而获得良好的锓润性,并在冷却时形成无空洞的界面。

  共面性&无空洞:

  随着HPLD芯片功率的增加,单管芯片变得更长,某些芯片尺寸长宽比也变得越来越大,例如长宽比>10。Bar条类的HPLD是极具挑战性的,因为它的结合表面积大,放大了键合后的特性缺陷,如空洞率%和Bar条倾斜角度。。 HPLD单管或bar条芯片与散热基板之间的准确共面性也非常关键,因为它会影响空洞率和引起应力。 因此,缺乏准确共面性会影响HPLD产品的性能和可靠性。 如果没有良好的共面性控制,由于共晶后在bar条中形成的残余应力,bar条可能会发生翘曲,通常被称为“微笑”曲线[3]。 长芯片可能会产生散热不均的情况,从而沿单管芯片长度方向产生热应力。 在共晶回流期间,各种尺寸的单管芯片或激光bar芯片需要不同的贴合力和精确的受力控制。

  高混合&快速生产

  当前,HPLD行业处于快速发展过渡状态,由于缺乏标准化,生产厂家必须应对需求增长和复杂多样的产品封装形势。 由不同供应商设计的工业HPLD-单管芯片到基板(CoS),和Bar条到基板(BoS)有很多变化。 HPLD封装设计具有更多的封装形式以适合不同的应用。因此,高混合生产是HPLD制造的又一重大挑战。

  3. 贴片方案

  为了应对HPLD应用中的这些贴片工艺的挑战,生产商需要一种超高精度,高速,高度灵活的全自动贴片机。 机器要求包括精度<±1.5μm,可编程力控制,共晶阶段的摩擦运动(在受控力的作用下沿X,Y,Z的微小运动)等特性。 因此,贴片机供应商试图提供更好的设备来满足这些要求。 在这里,MRSI-H-LD 1.5μm全自动贴片机提供了很好的解决方案。

  1.5 μm High-speed Die Bonder 1.5μm高速贴片机

  MRSI设计的针对HPLD贴片工艺应用的MRSI-H-LD 1.5μm全自动贴片机, 机器精度在3Sigma下为±1.5μm。 因为有一些并行过程可以缩短机器的循环时间,CoS的 UPH通常大于150(取决于应用程序)。

  脉冲加热台

  MRSI-H-LD提供了独特的脉冲加热快速升降温共晶台,该加热台有90-95%的氮-氢混合气体作为保护气,可用于防止结合表面的氧化。采用化合共晶材料使贴片过程的温度最低化,该典型温度通常约为315℃。 加热台可编程至最高400°C,共晶面板上温度均匀。MRSI-H-LD设计的是持久而稳定的加热台。

  闭环受力控制和可编程摩擦共晶

  MRSI-H-LD贴片机提供的是具有实时闭环力反馈和具有可调节功能的可编程焊头,可实现对III-V族半导体器件的精细化处理,按器件类型对贴合力进行编程,这意味着每个大尺寸高功率激光芯片可以通过其独有的编程和控制力来吸取和放置。

  MRSI-H-LD贴片机还提供特殊设计的自平衡调节吸头工具,该工具可保持良好均匀的粘结力,并且排出空气,减少空洞。该应用在整个芯片表面上施加均匀的粘结力,从而产生具有高芯片剪切强度的无空洞共晶贴片。这是实现准确共面的绝佳技术。

  MRSI-H-LD贴片机独有的摩擦共晶解决方案,可以实现粘接面无空洞,解决共面难题。摩擦共晶是在将芯片放置到基板上的过程中同时对其施加垂直和横向力的运动。可编程的摩擦共晶方案具有一个应用程序库用于客户化定制XYZ和θ的运动参数,可根据不同的芯片和基板条件完美地共面。在任何条件下都可以实现完美的无空洞的共晶工艺。

  在一台机器上灵活无切换的完成单管及Bar条芯片的贴片

  MRSI-H-LD贴片机具有独一无二的独特功能,可在运动中更换吸头,以处理不同形状和尺寸的部件,而无需进行设备更换或停机。该系统提供行业领先的产出量和出色的灵活性,能够在一台机器上完成单管芯片对基板的CoS,Bar条对基板的BoS, C-mount封装,以及其他种类HPLD的封装

  4.实验和性能结果

  以下介绍使用MRSI-H-LD贴片机的实验和结果。以玻璃芯片检查机器的精密性能。试验完成了芯片对基板CoS,Bar条对基板BoS, C-mount封装的贴片工艺。并测量了芯片键合关键位置精度结果,以及测试了空洞率的%结果和HPLD bar条芯片的平面度轮廓。

 A. 机器精度

  该实验介绍了验证设备精度的典型方法。玻璃芯片实验结果是基于15个数据点的样本量。 X和Y方向上的贴放重复性分别为<1 μm和0.5 μm(@3σ)。

  Figure 1: X和Y玻璃芯片贴放数据

  B. Chip-on-Submount (CoS)

  MRSI-H-LD贴片机还具有芯片倒装功能,并且可以完成腔面朝上和腔面朝下的工艺。 本节介绍了腔面朝上的CoS贴片方法,以下是典型的工艺要求。 在图2中,CoS尺寸从A(激光光发射面)到C(AuSn层表面边缘)是激光芯片悬伸,这对于HPLD贴片非常关键。 10个CoS贴片结果显示,共晶贴片后精度为<±3 μm @3σ,无凹陷,突出量<4 μm。



Figure 2:  图中显示了关键的贴片尺寸

  除了几何位置分析之外,我们还对样品进行了超声扫描显微镜(SAM)测试,以检测焊接界面中的空洞百分比。图3描绘了对单管激光芯片(4mm x500μmx120μm)AuSn共晶贴片到AlN基板在Sonoscan D-9000系列C-SAM机器上拍摄的图像。


  CoS空洞率测试的Sonoscan结果

  左图是经过处理的图像,右图是使用Sonoscan D-9000 C-SAM机器测量的原始图像,该表显示了空洞率百分比的结果。 如表中所示,贴片后的空洞率超过了MIL-STD 883K方法2030.2规范,并且还通过了更严格的HPLD空洞率指标。

  贴片封装的可重复性,准确性和空洞率是HPLD芯片贴片的关键性能指标,在这些性能满足的基础上,还必须实现快速交付。 在此示例中,采用了典型的共晶贴片工艺温度曲线,总循环时间在23秒或> 150UPH的范围内。

  C. 单管芯片到 C-Mount的封装

  本节概述了在将单管LD芯片粘合到由CuW制成的 C-mount封装上获得的结果。 在这个实验中,将尺寸为2mm x500μmx0.12μm的LD单管芯片贴装到尺寸为6.35mm x 2.18mm x 6.86mm(L xW x H)带有预沉积的AuSn焊料的 C-mount上。 从9个单管芯片贴片到C-mount上的结果表明,在3σ时芯片悬垂<4.3μm。贴片后测量关键的参数均在规格范围内。

  除了贴片的精度,我们也使用SAM和Sonoscan D-9000系列测量工具测量了焊接界面中的空洞百分比。 图4显示了从机器拍摄的图像。 左边是经过处理的图像,右边是原始图像,下表是空洞百分比的测量。

  C-mount空洞测试的Sonoscan结果

  空洞百分比的结果总结体现在表4中。贴片后空洞百分比超过了MIL-STD 883K方法2030.2规范,达到了更严格的HPLD指标。

  D. Laser Bar on Submount 激光Bar条到基板的封装

  本节概述了使用MRSI-H-LD全自动贴片机进行HPLD bar条封装结果。用预沉积的AuSn焊料将HPLD bar条样品贴装在CuW基座上。HPLD bar条尺寸为10mm x 2mm x130μm(L xW x H),CuW底座尺寸为10.6mm x 4.0mm x 0.25mm(L xW x H)。

  MRSI-H-LD设计了一种自平衡的吸头,通过在整个贴片表面上施加均匀的压力来降“低微”笑曲线效果,从而保持了激光芯片与基板的准确共面。图5显示了已封装的激光bar条的平面度轮廓。在发出激光出射的前端面边缘处,平坦度在130μm±1μm的范围内,机械“微笑”曲线在<2μm范围内,这对于AuSn共晶贴片是可接受的。低微笑曲线可提供更高的光束质量,因此是所有高功率应用的关键指标[4]。

  Figure 5: 用VR5000 3D表面轮廓仪测量的HPLD bar条的平坦度轮廓(由Keyence提供)

  在LD bar的整个长度上的线性偏移或偏邪是一个重要的参数指标,因为LD bar 的聚焦光束大小将因该偏移而变化[4]。 通常,laser bar的边缘到边缘的线性偏移应小于5μm。 根据实验结果,线性偏移测量值为3.8μm(3σ),完全在规定范围内。

  5.  总结

  实验结果表明,MRSI-H-LD贴片机为解决HPLD的所有管芯贴片工艺难题提供了一个很好的解决方案。机器玻璃芯片精度为<1 μm @ 3 sigma,优于规格的1.5 μm @ 3 sigma,COS和 C-mount贴片的悬伸分别小于4和4.3 μm,而且Bar条的线性偏移为3.8 μm (优于<5 μm规格)。空洞率%结果表明,MRSI-H-LD贴片机可以实现无空洞的共晶工艺。 CoS,COC,BoS的所有封装都可以在一台机器上完成。 典型的单管激光芯片到基板(CoS)的UPH> 150。 MRSI-H-LD贴片机独特的功能组合为大批量和高混合HPLD封装生产提供了完美的贴片解决方案。

  参考文献:

  1. Victor Rossin, et. al, “Chapter 5: Laser Diode Basics and Single-emitter performance”, High-Power Laser Handbook, Injeyan, Goodno -McGraw Hill, 2011.

  2. Hans-Georg Treusch, Rajiv Pandey, “Chapter 6: High-Power Diode Laser Arrays”, High-Power Laser Handbook, Injeyan, Goodno -McGraw Hill, 2011.

  3. Xingsheng Liu, et. al, “Chapter 4: Thermal Stress in High Power Semiconductor Lasers” Packaging of High Power Semiconductor Lasers, Springer Science, 2015

  4. Peter Loosen, Alexander Knitsch “Chapter 4: Incoherent Beam Superposition and Stacking” High Power Diode Lasers: Technology and Applications,– Springer Science Series, 2007


来源 : 讯石光通讯网 发布时间 : 2020-04-11

中科院研究基于全固态激光器的谐振光束无线充电技术

把能量发射器装在吸顶灯上,整个房间随处可以给手机、平板、手提、投影仪等设备隔空充电?最近,上海科学家将这种近乎科幻的能量传输方式的雏形,带到了现实中。未来,随着技术不断发展成熟,除了有望应用于室内环境中的电子设备之外,该技术还可能在室外环境中,用于为行驶中的无人机、汽车等设备无线充电,甚至还可以用于为恶劣环境中的电子设备供电。

4月9日消息,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与同济大学电子与信息工程学院研究人员合作,开展了基于全固态激光器的谐振光束无线充电技术研究,实现了2瓦电功率、2.6米的无线能量传输,并研究了能量传输范围内的能量传输效率。

物联网、航空航天、消费电子等技术的蓬勃发展对电子设备的高性能、可移动、易便携等性能提出了越来越高的要求,从而使电子设备的电池容量和供电之间的矛盾也越来越显著。在使用中,需要随身携带充电线和寻找充电插座为电子设备的使用带来了很多的不便。因此,为电子设备提供随时随地无线能量传输的技术受到了研究者的广泛关注。

中科院研究基于全固态激光器的谐振光束无线充电技术

现有的无线能量传输技术主要有两种,都存在各自的短板:

一种是近场无线能量传输,其技术主要有磁感应和磁共振。现在常见的电动牙刷、电动剃须刀、智能手机等电子设备通常采用磁感应技术进行充电。由于近场无线能量传输技术的有效充电距离很短,因此在使用时需要将电子设备紧贴在无线充电底座上,而无线充电的底座仍需要通过线缆连接到插座上。

另一种是远场无线能量传输,技术主要有射频、超声波、激光等。但是由于辐射安全限制,现有的远场无线能量传输技术能安全传输的功率较低,或者只能在无安全要求的条件下使用。因此,现有的无线传能技术均无法同时实现安全、远距离、高功率的无线能量传输。

在该项研究中,研究人员提出利用全固态激光的腔内光作为无线能量传输媒介的谐振光束充电技术,可以安全的传输数瓦的无线功率到数米的距离。

据相关研究人员介绍,谐振光束充电技术具有本征安全性。一方面,传输通道内一旦有异物遮挡可以自动切断能量的传输;另一方面,传输通道外的生物不会受到电磁波的辐射。

除此之外,谐振光束充电系统还可实现自动对准和同时多路输出。

研究人员提出了谐振光束充电能量传输通道的解析模型和分析了谐振光束充电系统的连续、稳定运转条件以及工作距离内的能量传输效率;建立了谐振光束系统的测试平台,在输出光功率为10.18W的条件下,实现了2W的电功率传输到最远2.6m的距离;在实验和理论上对谐振光束充电系统的传输距离、传输效率、输出电功率等性能进行了评估。

以手机充电为例,利用谐振光束充电技术,可以将发射机布置在距离接收机数米的位置处(例如室内的顶灯位置),同时可以将接收器集成到手机壳中,此时只要将手机放置于发射机的有效覆盖范围内即可实现能量传输,不再需要将手机放置在特定的充电器上,也不需要连接线缆。

通过进一步提升接收机的可移动性,该技术有望应用于室内环境中的电子设备,例如手机,笔记本电脑,投影仪等设备的无线充电。以及室外环境中可以用于为行驶中的无人机,汽车等设备无线充电。还可以用于为恶劣环境中的电子设备供电。

随着物联网技术的发展,物联网设备的电量供给成为制约物联网发展的障碍之一。物联网设备的电池容量和供电之间的矛盾也愈加显著。因此,为物联网设备提供随时随地无线能量传输的技术受到了研究者的广泛关注。现有的无线能量传输技术主要有两种:近场无线能量传输与远场无线能量传输。近场无线能量传输技术主要有磁感应和磁共振。远场无线能量传输技术主要有射频、超声波、激光等。但是由于技术限制,现有的无线传能技术均无法同时实现安全、远距离、高功率的无线能量传输。


来源 : 电子说 发布时间 : 2020-04-10

上海光机所在微纳多色激光研究领域取得重要进展

近日,中国科学院上海光学精密机械研究所微结构与光物理研究团队与南京晓庄学院、中科院上海高等研究院等研究机构合作,在微腔调制宽带可调谐激光研究领域取得重要进展。实现一种新型宽带隙可调谐CsPbCl3-3xBr3x纳米线状微腔,并利用密度泛函理论与动力学实验解析了该材料离子交换的动力学特征及其内在化学机理,基于微腔规则的几何结构及宽带隙调节特性,在单个微腔上成功实现高品质、宽带可调谐微纳激光输出。相关成果于3月1日发表于国际著名期刊《纳米能源》(Nano Energy)。

具备宽带可调谐特性的纳米线微纳激光光源在微型光电子器件方面具有重要应用前景。但是,受制于纳米线的窄增益区间,现行研究大多依赖于单个器件上集成多根纳米线实现宽带可调谐激光输出,这极大地阻碍了光电子器件的进一步小型化和集成化。近年来,由于其具备吸收系数高、荧光产率高、光谱调谐范围大等特性,钙钛矿材料备受关注。诸多研究表明,相比于传统光学材料,钙钛矿纳米线微纳激光具备高品质、低阈值、宽带可调谐特性。然而,受制于钙钛矿材料柔软的晶格特性,单根钙钛矿纳米线很难实现宽带可调谐激光输出。因此,需要探索新的制备方案和机理,以优化钙钛矿纳米线的形貌结构、晶体质量以及增益区间,从而实现宽带可调谐的微纳激光输出。

图为:微腔调制的宽带可调谐微纳多色激光

在该项研究中,研究人员首先通过改进的化学气相沉积技术制备了高质量钙钛矿纳米线状微腔,然后基于阴离子固相迁移反应在单根纳米线上成功实现了宽带隙可调荧光发光。结合密度泛函理论,研究人员解析了钙钛矿纳米结构中阴离子迁移的原子路径,揭示了离子迁移的基本过程并阐明其离子迁移的来源——小的离子迁移激活能,为材料离子迁移、相分离及光学性质的研究奠定了坚实的理论及实验基础。动力学实验进一步佐证了理论结果,随着反应时间的变化,单根纳米线历经三个主要过程:首先,由发光一致的纳米线逐渐变化为带隙可调纳米线;然后,纳米线整体带隙可调,但是其带隙随着反应时间增加而减小;最后,纳米线被整体同化,转化为发光一致的纳米线,但整体发光波长较开始阶段红移。实现的纳米线状微腔具备规则的几何结构、光滑的表面及宽带可调谐特性,可同时作为增益介质及光学微腔,进而实现单根纳米线宽带可调谐激光输出,实验上成功获得了480-525 nm的宽带可调谐微纳多色激光。

该项研究解析了钙钛矿纳米结构中离子迁移的原子路径、基本过程、动力学特征及化学机制,并利用单根纳米线状微腔实现了宽带可调谐激光输出,为分析钙钛矿材料离子迁移与光电性能的联系等提供了坚实的理论及实验基础,进一步推进了高品质宽带可调谐微纳多色纳米激光器的研究进展。

相关工作得到了国家自然科学基金委、上海市青年拔尖等项目的支持。


来源 : 上海光机所 发布时间 : 2020-04-09

返回顶部