激光协会
首页 > 产业交流平台

激光-电弧复合焊接技术在造船上的应用进展

发布时间:2017-11-24

陈长军、张敏、王晓南、胡增荣、孙茜

苏州大学激光加工中心 江苏 苏州 215021

引言

1.1 复合焊的优点

激光具有高亮度、高方向性、高单色性、高相干性及特殊的空间分布特性等优点,可获得高达1011W/cm2的聚焦功率密度,其巨大的能量集中在非常小的范围内,能迅速将材料局部升温至极高的温度,并能以较高的冷却速度进行冷却,因此激光加工技术已成为一种无与伦比的材料加工方法[1]。激光材料加工技术在工业领域应用的广泛程度,已然成为衡量一个国家工业水平高低的重要标志。激光焊接技术与传统焊接技术相比,具有焊缝深宽比高、热影响区窄、焊接接头质量佳、生产效率高等突出优点,因此逐渐得到科研人员及企业的关注。常见的激光焊接技术包含单纯激光焊接、激光填丝焊接和激光-电弧复合焊接(Hybrid Laser Arc Welding)。由于激光和熔化极气体保护焊(Gas metal Arc Welding, GMAW)能加速焊接工艺,降低成本,并提高焊接质量。所以激光焊接和复合焊在汽车制造、航空航天领域中已经得到了广泛的应用。但在造船行业中应用还不是很普遍,尤其是在中国的造船上,还在大量的使用人力进行焊接,不仅污染环境、而且劳动强度大、危害比较大、精度和效率也无法保证。

激光复合焊结合了激光焊和MAG焊或其它气体保护焊两种技术的优势。复合焊主要的优点是:焊接穿透的深度深而且焊道窄,焊接速度快,热输入低,热影响区小,热变形小;焊缝质量高,外观佳,物理性能好,返工率低,焊缝底部控制好,可实现单面焊双面成形。并且确保了焊缝的金属结构与机械属性。
阅读全文,点击链接:http://www.laserfair.com/newebook/201611/index.php#page/3

参考文献

[1]Liu Shunhong. Laser Manufacturing Technology[M]. Wuhan: Huazhong University of Science and Technology Press, 2011, 1~4.

    刘顺洪. 激光制造技术[M]. 武汉:华中科技大学出版社, 2011, 1~4.

[2]W. Xu, D. Westerbaan, S.S. Nayak, et al.. Tensile and fatigue properties of fiber laser welded high strength low alloy and DP980 dual-phase steel joints [J]. Materials and Design, 2013, 43: 373~383.

[3]W. M. Steen. Arc augmented laser processing of materials [J], Journal of Applied Physics, 1980, 51(11): 5636~5641.

[4]Xiao Rongshi, Wu Shikai. Progress on Laser-arc hybrid welding[J], Chinese Journal of Lasers, 2008, 35(11): 1680~1685.

    肖荣诗, 吴世凯. 激光-电弧复合焊接的研究进展[J], 中国激光, 2008, 35(11): 1680~1685.

[5]Ji Yipeng, Chen Jiaqing, Jiao Xiangdong, et al.. Laser-arc hybrid welding technology[J], Welding Technology, 2009, 38(12): 1~7.

    姬宜朋, 陈家庆, 焦向东等. 激光-电弧复合热源焊接技术[J], 焊接技术, 2009, 38(12): 1~7.

[6]Cui Li, Zhang Yanchao, He Dingyong, et al.. Research progress of high power fiber laser welding[J], Laser Technology, 2012, 36(2): 154~159.

    崔丽,张彦超,贺定勇等.高功率光纤激光焊接的研究进展[J], 激光技术, 2012, 36(2): 154~159.

[7]X.N. Wang, L.X. Du, H.S. Di, et al.. Effect of deformation on continuous cooling phase transformation behaviors of 780MPa Nb-Ti ultra-high strength steel[J], Steel Research International, 2012, 82(12): 1417~1424.

[8]Song Yongjun, Wang Xiaonan, Xu Zhaoguo, et al.. Development of 700MPa grade ultra-high strength heavy duty automobile carriage strip[J], Journal of Mechanical Engineering, 2011, 47(22): 69~73.

    宋勇军, 王晓南, 徐兆国等. 700MPa级超高强重载汽车车厢板的研制[J], 机械工程学报, 2011,

    47(22): 69~73.

[9]Li Xiaoyan, Wu Chuansong, Li Wushen. Study on the progress of welding science and technology in China[J], Journal of Mechanical Engineering, 2012, 48(6): 19~30.

    李晓延, 武传松, 李午申. 中国焊接制造领域学科发展研究[J], 机械工程学报, 2012, 48(6): 19~30.

[10]Liu Jichang, Li Lijun, Zhu Xiaodong, et al.. Discussion on laser welding combined with other heat resources[J], Laser Technology, 2003, 27(5): 486~489.

    刘继常, 李力钧, 朱小东等. 试析几种激光复合焊接技术[J], 激光技术, 2003, 27(5): 486~489.

[11]S. Katayama, Y. Kawahito, M. Mizutani. Latest progress in performance and understanding of laser welding[J], Physics Procedia, 2012, 39: 8~16.

[12]C. M. Allen. A brief review of recent developments in laser welding processes for ferritic pipe steels[J], Australasian Welding Journal, 2007, 52(4): 21~22.

[13]Steve Shi, David Howse. Laser welding and laser--MAG compound welding of shipbuilding[J], Electric Welding Machine, 2007, 37(6): 32~39.

    石功奇, David Howse. 船用钢结构的激光焊接以及激光-MAG复合焊接[J], 电焊机, 2007, 37(6): 32~39.

[14]Huang Jian, Gao Zhiguo, Cai Yan, et al.. High power CO2 laser welding of shipbuilding steel[J], Electric Welding Machine, 2008, 38(3): 7~11.

    黄坚, 高志国, 蔡艳等. 船用钢板的高功率CO2激光焊接[J], 电焊机, 2008, 38(3): 7~11.

[15]J.M. Ni, Z.G. Li, J. Huang, et al.. Strengthening behavior analysis of weld metal of laser hybrid welding for microalloyed steel[J], Materials and Design, 2010, 31(8): 4876~4880.

[16]D. Petring, C. Fuhrmann, N. Wolf, et al.. Investigations and applications of laser-arc hybrid welding from thin sheets up to heavy section components[A]. 22nd International Congress on Applications of Lasers and Electro Optics[C]. Congress proceedings, 2003: 1~10.

[17]S.H. Zhang, Y.F. Shen, H.J. Qiu. The technology and welding joint properties of hybrid laser-TIG welding on thick plate[J], Optics & Laser Technology, 2013, 48: 381~388.

[18]Z.J. Liu, M. Kutsuna, L.Q. Sun. CO2 laser-MAG hybrid welding of 590MPa high strength steel[J], 溶接学会論文集, 2006, 24(1): 17~25.

[19]By C. Roepke, S. Liu. Hybrid Laser arc welding of HY-80 Steel [J], Welding Journal, 2009, 88(Supplementary Issue): 159~167.

[20]By C. Roepke, S. Liu, S. Kelly, et al.. Hybrid laser arc welding process evaluation on DH36 and EH36 steel[J], Welding Journal, 2010, 89: 140~150.

[21]Zeng Xiaoyan, Gao Ming, Yan jun. Effects of shielding gas in laser-arc hybrid welding[J], Chinese Journal of Lasers2011, 38(6): 1~7.

    曾晓雁, 高明, 严军. 保护气体对激光-电弧复合焊接的影响[J], 中国激光, 2011, 38(6): 1~7.

[22]P. Sathiya, M.K. Mishra, R.Soundararajan, et al.. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel[J], Optics & Laser Technology, 2013, 45: 46-55.

[23]G.Tani, G. Campana, A. Fortunato, et al.. The influence of shielding gas in hybrid Laser-MIG welding[J], Applied Surface Science, 2007, 253: 8050~8053.

[24]L.H. Hu, J. Huang, Z.G. Li, et al.. Effects of preheating temperature on cold cracks, microstructures and properties of high power laser hybrid welded 10Ni3CrMoV steel[J], Materials and Design, 2011, 32: 1931~1939.

[25]Hu Peipei, Wang Chunming, Hu Xiyuan. Research progress of fiber laser welding and fiber laser-arc hybrid welding[J], Welding, 2011, 7: 40~45.

   胡佩佩, 王春明, 胡席远. 光纤激光及其复合焊接研究进展[J], 焊接, 2011, 7: 40~45.

[26]M. Shin, K. Nakata. Single pass full penetration welding of high-tensile steel thick-plate using 4kW fiber laser and MAG arc hybrid welding process[J], 溶接学会論文集, 2009, 27(2): 80-84.

[27]X. Cao, P. Wanjara, J. Huang, et al.. Hybrid fiber laser – Arc welding of thick section high strength low alloy steel[J], Materials and Design, 2011, 32: 3399~3413.

[28]S. Grünenwalda, T. Seefeld, F. Vollertsen. Solutions for joining pipe steels using laser-GMA-hybrid welding processes[J], Physics Procedia, 2010, 5: 77~87.

[29]G. Turichin, E. Valdaytseva, I. Tzibulsky, et al.. Simulation and technology of hybrid welding of thick steel partswith high power fiber laser[J], Physics Procedia, 2011, 12: 646~655.

[30]M. Rethmeier, S. Gook, M. Lammers, et al.. Laser-hybrid welding of thick plates up to 32mm using a 20kW fiber laser[J], Quarterly Journal of the Japan Welding Society, 2009, 27(2): 74~79.

[31]V. Caccese, P.A. Blomquist, K.A. Berube, et al.. Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes[J], Marine Structures, 2006, 19: 1~22.

[32]Wang Qiming. Breakthroughs and developments of semiconductor laser in China[J], Chinese Journal of Lasers2010, 37(9): 2190~2197.

    王启明. 中国半导体激光器的历次突破与发展[J], 中国激光, 2010, 37(9): 2190~2197.

[33]Wang Yonggang, Ma Xiaoyu. The application and present situation of lasers in the automobile industry[J], Journal of Applied Optics, 2004, 25(5): 1-2.

王勇刚, 马骁宇. 激光在汽车工业中的发展现状与应用[J]. 应用光学, 2004, 25(5): 1-2.

[34]UWE REISGEN。船舶制造中的激光复合焊[J]. Industrial Laser Solution,2014.10,http://www.industrysourcing.cn/article/302539。


上一篇: 世界首个3D打印柔性心脏诞生 下一篇: 绿色再制造技术在轨道交通行业的应用

返回顶部